Unit 6 Summary

Prior Learning	Grade 7, Unit 6	Future Learning
Grade 6 - Solving one-step equations - Distributive property	- Creating equations and tape diagrams - Solving equations	Grade 7, Unit 7 - Writing equations and solving problems with angle relationships
Grade 7, Unit 5 - Operations with positive and negative numbers	- Writing, solving, and graphing inequalities	Grade 8 - Solving linear equations with variables on both sides
		- Solving systems of linear equations
		- Solving equations with no solution and infinitely many solutions

Equations and Tape Diagrams

There are many different ways to represent the same situation.
Here are two similar situations:

Situation

Some decks of playing cards in Italy and Spain have 40 cards.
There are four suits. Each suit has 3 face cards and x non-face cards.

A chef at a Burmese restaurant makes 40 quarts of mohinga, a noodle and fish soup.
She uses 3 quarts now and divides the

Equation

$$
40=4(x+3)
$$

	40			
$x+3$	$x+3$	$x+3$	$x+3$	

$$
40=4 x+3
$$ rest equally into 4 containers to freeze.

In the first situation, each part of the tape diagram is 10 units, so $x=7$ because $7+3=10$.

In the second situation, the part of the tape diagram with 4 groups of x is 37 units, so $x=9.25$ because $4(9.25)=37$.

desmos

Unit 7.6, Family Resource

Solving Equations

Some equations can be represented by hangers where both sides are balanced. Solving an equation is like determining an unknown weight of a shape on a hanger.

For some equations, it can be helpful to write one side using fewer terms first so that the equation looks more familiar before we start solving steps. For example:

$$
\begin{aligned}
-2(x-5)+8 x & =14 \quad \text { Multiply }(x-5) \text { by }-2 \\
-2 x+10+8 x & =14 \\
6 x+10 & =14
\end{aligned} \quad \text { Add }-2 x \text { and } 8 x .
$$

Inequalities

We can use inequalities to describe a range of numbers. Here is an example of a situation that could be described using an inequality.

The cost to rent a scooter is $\$ 2.00$, plus another $\$ 0.30$ per minute you ride.

Callen has a $\$ 10$ credit.

For how many minutes could he ride?

$$
0.30 x+2 \leq 10
$$

Determine when he would spend exactly $\$ 10$.

$$
\begin{aligned}
0.30 x+2 & =10 \\
x & =26 . \overline{66}
\end{aligned}
$$

Since he cannot ride part of a minute, Callen could ride anywhere between 0 and 26 minutes.

desmos

Unit 7.6, Family Resource

Try This at Home

Equations and Tape Diagrams

1.1 Draw a tape diagram to represent the equation $3 x+6=24$.
1.2 Draw a tape diagram to represent the equation $24=3(x+6)$.
1.3 Decide which equation-diagram pair above matches this story. Explain your reasoning.

Diya made three different-flavored pastries for her family. She made the pastries one at a time. For each, she measured 6 tablespoons of flour and a little more to keep the dough from sticking. In total, she used 24 tablespoons of flour.
1.4 Write a story that goes with the other equation-diagram pair.

Solving Equations

Solve each equation.
$2.13 x+6=24$
$2.224=3(y+6)$
$2.3-2(x+6)=30$
$2.45-2(x+6)=30$

Match each expression with an equivalent expression from the list. One expression in the list will be left over.
3.1 $5 x+8-2 x+1$
$3.2 \quad 6(4 x-3)$
$3.3(5 x+8)-(2 x+1)$
$3.4-12 x+9$

- $3 x+7$
- $3 x+9$
- $-3(4 x-3)$
- $24 x+3$
- $24 x-18$

desmos

Unit 7.6, Family Resource

Inequalities

Malik has saved $\$ 10.50$. His elderly neighbor gives him $\$ 3$ every time he does a chore at his house. Malik wants to know how many chores he needs to do in order to have at least $\$ 30$.
4.1 Will Malik reach his goal if he does chores for his neighbor 8 times?
4.2 Which inequality could Malik write to represent his situation? Explain how you know.
A. $3 c+10.50 \leq 30$
B. $3 c+10.50 \geq 30$
C. $3 c-10.50 \leq 30$
D. $3 c-10.50 \geq 30$
4.3 Solve the inequality you chose.
4.4 Use your solution to answer Malik's question.

desmos

Unit 7.6, Family Resource

Solutions:

1.1

\longmapsto	24		
x	x	x	6

1.2

$1.33(x+6)=24$. Explanations vary. Each of the pastries uses 6 tablespoons plus a little more, so there are 3 groups and each group has more than 6 tablespoons in it.
1.4 Responses vary. My brother, my half sister, and I open up a new box of 24 cookies. Yum! We each eat the same number so it's fair. When we're done, there's 6 left over for our mom.

Strategies vary.

2.1	$3 x+6=24$	2.2	$24=3(x+6)$	2.3	$-2(x+6)=30$	2.4	5-2(x+
	$3 x=18$		$8=x+6$		$-2 x-12=30$		$5-2 x-12=30$
	$x=6$		$2=x$		$-2 x=42$		$-2 x-7=30$
					$x=-21$		$-2 x=37$
							$x=-\frac{37}{2}$

$3.15 x+8-2 x+1=3 x+9$
$3.2 \quad 6(4 x-3)=24 x-18$
$3.3-(5 x+8)-(2 x+1)=3 x+7$
$3.4-12 x+9=-3(4 x-3)$
4.1 Yes! Malik will make $3(8)=24$ dollars. If we add that to the $\$ 10.50$ he already has, that is more than $\$ 30$.
$4.23 c+10.50 \geq 30$. The $3 c+10.50$ is like how much money he earns, and he wants to earn at least $\$ 30$, so the total needs to be greater than or equal to 30 .
$4.3 \quad 3 c+10.50 \geq 30$

$$
\begin{array}{r}
3 c+10.50=30 \\
3 c=19.50 \\
c=6.5 \\
c \geq 6.5
\end{array}
$$

4.4 Since Malik cannot do half of a chore, he needs to do 7 or more chores to reach his goal.

